The proton therapy industry is at a pivotal moment, with active recruiting clinical trials having doubled since 2013 and over 1,200 treatment rooms predicted by 2030.

Data collected from ClinicalTrials.gov, November 2016
Dear Colleague,

For the first time, final results from a randomised controlled clinical trial comparing proton therapy with conventional photon treatment have been published. The data illustrate the continuing efforts around determining suitable evidence-based indications for proton therapy.

The Proton Therapy Congress will bring together leaders from a multitude of scientific disciplines to showcase unpublished data, new technological advances and translational case studies to highlight not only the strengths of proton therapy, but also the challenges surrounding its optimisation, and practical implementation.

As the proton therapy industry maintains its rapid growth, and the local demand for proton therapy increases, it is estimated that that between 300,000 to 600,000 patients will be treated with particle therapy in one of the 1,800 expected particle therapy treatment rooms worldwide in 2030. Therefore, it is becoming increasingly important to develop effective methods for patient selection, and representatives such as Petra Witt Nyström and Cai Grau share the model-based selection approach currently accepted by their county’s health authority, whilst Jérôme Doyen and Stephanie Combs share findings from their ongoing clinical trials to determine suitable indications for treatment.

Although in recent years’ proton therapy has caught up with conventional radiotherapy technology, uncertainties around planning and delivering treatment still remain. Leading medical physicists such as Marco Schwarz touch upon these uncertainties whilst Giuseppe Schettino presents the importance of relative biological effectiveness in clinical proton therapy. The wider context of proton therapy will be recognised as Oliver Jäkel and Tadashi Kamada discuss the use of Helium and Carbon as potentially viable alternatives to proton therapy.

The conference will not only combine content from academics carrying out research and clinicians delivering treatment, but most importantly consider the practical aspects of proton therapy, from health economics to practical implications of patient data collection and the use of big data in clinical decision support. The processes involved in developing and managing a successful centre will be explored in a unique workshop, facilitated by Professor James Metz, highlighting case studies and lessons to be learned from prestigious centres and examining the challenges around building a business case for proton therapy, turning the proton therapy vision into a clinically and commercially viable reality.

Whether you are a practicing clinician, an academic in the field, a ground-breaking solution provider, or just want to find out how proton therapy is relevant to your work, this meeting will be beneficial to you. This is a unique opportunity to discuss ideas and identify strategies for development in all aspects of proton therapy optimisation: clinical, biological, technological, logistical and financial.

Network and collaborate with senior clinical oncologists and medical physicists, from both current and planned proton therapy facilities, and benefit from peer to peer benchmarking to improve your current clinical practice and patient outcomes.

I look forward to meeting you all in Amsterdam.

Stephanie
Conference Director | Kisaco Research

Reasons why you should attend:

Discuss ideas and identify strategies for development in all aspects of proton therapy optimisation: clinical, biological, technological, logistical and financial.

Network and collaborate with senior clinical oncologists and medical physicists, from both current and planned proton therapy facilities, and benefit from peer to peer benchmarking to improve your current clinical practice and patient outcomes.

Unique pre-conference workshop day

- Case studies and lessons to be learned
- Overcome challenges around building a business case for proton therapy
- Explore the process involved in planning and developing a successful centre

Turn the proton therapy vision into a clinically and commercially viable reality.
What to expect at the Proton Therapy Congress

25+ SPEAKERS

200+ ATTENDEES

7 HOURS DEDICATED NETWORKING TIME

1:1 RATIO OF CLINICAL ONCOLOGISTS AND MEDICAL PHYSICISTS

25+ COUNTRIES

AUDIENCE

A great meeting with world experts on PBT all in one place. Great networking experience.

JAMES SNELL
LEAD RADIOGRAPHER
PROTON PARTNERS

Scientific lectures were interesting but talks on the economics and IT infrastructure/registry were enlightening.

ASHLEY RICHMOND
HEAD OF MEDICAL PHYSICS
THE LONDON CLINIC

Very comprehensive, all aspects discussed.

JOSEF KOVARIK
CONSULTANT CLINICAL ONCOLOGIST
NORTHERN CENTRE FOR CANCER CARE

This was a useful meeting with great collaboration and networking opportunities. It was not without controversial claims but that served to provoke some robust debate.

STEVE BLAKE
HEAD OF RADIOTHERAPY PHYSICS
BRISTOL HAEMATOLOGY AND ONCOLOGY CENTRE

Excellent and well organised meeting.

KAROL SIKORA
CEO, PROTON PARTNERS INTERNATIONAL

It was excellent to hear the experience and advice from the major international PBT centres on how to set-up a PBT service.

JOHN STAFFURTH
CLINICAL ONCOLOGIST
VELindre NHS TRUST

“...”
SPEAKER FACULTY

PRESTIGIOUS SPEAKERS

PROFESSOR JOHANNES LANGENDIJK
Chair of Department of Radiation Oncology, University of Groningen

PROFESSOR OLIVER JAKEL
Medical Physics Director, HIT GmbH, Heidelberg

PROFESSOR PHILIPPE LAMBIN
Director, Maastricht Radiation Oncology Clinic, University of Maastricht and MAASTRO Clinic

PROFESSOR TADASHI KAMADA
Director, NIRF Research Center for Charged Particle Therapy

DR JIRI KUBES
Medical Director, Proton Therapy Centre Czech

PROFESSOR DAMIEN WEBER
Head and Chairman, PSI

PROFESSOR DR YOLANDE LIEVENS
Chair of the Radiation Oncology Department, Ghent University Hospital, Belgium

PROFESSOR CAI GRAU
Professor of Radiotherapy, Department of Oncology, Aarhus University Hospital

DR JÉRÔME DOYEN
Radiation Oncologist, Antoine Lacassagne Cancer Center

PROFESSOR SANDRINE LACOMBE
Group Leader Nanomedicine and Hadrontherapy, Institut des Sciences Moléculaires d’Orsay

PROFESSOR GIUSEPPE SCHETTINO
Principal Research Scientist in the Radiation Dosimetry Group, NPL

PROFESSOR DIRK DE RUYSCHER
Radiation Oncologist, Maastricht Clinic, Maastricht University Medical Center

DR VLADIMIR VONDRADEK
Head of Clinical Physics, Proton Therapy Centre Czech

DR JEM RASHBASS
Director for National Disease Registration, Public Health England

DR HÅKAN NYSTROM
Chief Physicist, Head of Clinic, Skandion, Uppsala

PROFESSOR STEPHANIE COMBS
Director of the Clinic for Radiation Oncology and Radiation, Technical University of Munich

JORN VERWEIJ
Project Leader Proton Therapy, Trees with Character

PROFESSOR MICHAEL BRADA
Professor of Radiation Oncology, University of Liverpool

PROFESSOR GILLIES MCKENNA
Director of Oxford Institute for Radiation Oncology, University of Oxford

PROFESSOR PETRA NYSTROM
Specialist Physician, Experimental and Clinical Oncology, Uppsala University

PROFESSOR BEATE TIMMERMANN
Director of the Clinic for Particle Therapy and Medical Director, The West German Proton Therapy Centre, Essen
AGENDA OVERVIEW

PRE-DAY WORKSHOP: 28.03.17
13.00 REGISTRATION
13.30 INTERACTIVE WORKSHOP
14.30 END OF PRE-DAY WORKSHOP

DAY ONE: 29.03.17
08.00 REGISTRATION
08.55 CHAIRMAN’S OPENING REMARKS
09.00 RESULTS OF THE EORTC FACILITY QUESTIONNAIRE SURVEY OF EUROPEAN PARTICLE CENTRES
09.30 SELECTION OF PATIENTS FOR PROTON THERAPY
10.00 STARTING UP A NATIONAL CENTRE FOR PROTON THERAPY
10.30 MORNING NETWORKING BREAK
11.00 RADIOThERAPY WITH HELIUM IONS
11.30 COMBINING PROTON THERAPY WITH OTHER TREATMENT OPTIONS
12.00 BIOLOGICAL EFFECTIVENESS OF PROTON & ION BEAMS
12.30 NETWORKING LUNCH
13.30 CLINICAL BENEFITS & CHALLENGES FOR PARTICLE THERAPY IN PAEDIATRIC TUMOURS
14.00 PRESENTATION ABSTRACT TO BE CONFIRMED
14.30 PROTON THERAPY IN DENMARK
15.00 AFTERNOON NETWORKING BREAK
16.00 DISCUSSION
17.00 PROTON RADIOTHERAPY WITH PENCIL BEAM SCANNING
17.30 IMPROVING PROTON THERAPY BY METAL-CONTAINING NANOPARTICLES
18.00 CLOSE OF CONFERENCE DAY ONE

DAY TWO: 30.03.17
08.00 REGISTRATION
08.55 CHAIRMAN’S OPENING REMARKS
09.00 BIG DATA-BASED DECISION SUPPORT SYSTEMS FOR PROTON THERAPY
09.30 PROTON BEAMS IN CANCER TREATMENTS
10.00 PRESENTATION ABSTRACT TO BE CONFIRMED
10.30 MORNING NETWORKING BREAK
11.00 PRACTICAL IMPLICATIONS OF PATIENT DATA COLLECTION AND ANALYSIS
11.30 CLINICAL EVALUATION OF PROTON THERAPY
12.00 PROTON THERAPY: HOW TO MAKE IT HAPPEN FROM AN ECONOMIC PERSPECTIVE
12.30 NETWORKING LUNCH
13.30 SUSTAINABLE CARBON-ION RADIOTHERAPY FACILITIES USING NEXT-GENERATION TECHNOLOGY
14.00 PROTON THERAPY: HOPE, HYPE, MISINFORMATION AND CLINICAL EVIDENCE
14.30 HOW TO COLLABORATE ON A NATIONAL LEVEL TO SECURE QUALITY AND PATIENT RECRUITMENT
15.30 AFTERNOON NETWORKING BREAK
16.00 DISCUSSION
17.00 THE ROBUSTNESS OF PBS TREATMENT
17.30 COMBINING PROTON THERAPY WITH IMMUNE THERAPY: NATURAL PARTNERS?
18.00 CLOSE OF CONFERENCE DAY TWO

PLANNING AND DEVELOPING A SUCCESSFUL PROTON THERAPY CENTRE

These sessions will explore the challenges and hurdles associated with building a proton therapy centre and offer advice and guidance on how best to overcome them. Read more

DETERMINING SUITABLE INDICATIONS FOR PROTON THERAPY

These sessions will explore current clinical trial data and model-based selection approaches, touching not only upon the positive data but also the challenges encountered during each clinical trial and how they were overcome. Read more

HEALTH ECONOMICS, QUALITY ASSURANCE AND PRACTICAL IMPLEMENTATION

These sessions will explore the challenges and hurdles associated with the practical implementation of proton therapy into general radiotherapy practice and discuss innovative ways to use patient data to further improve patient outcomes. Read more

OPTIMISING PROTON THERAPY AND TRANSLATING ACADEMIC RESEARCH INTO THE CLINIC

These sessions will explore the current uncertainties in proton therapy and discuss how academic research working to overcome these challenges will be translated into the clinic. Read more

DETERMINING SUITABLE INDICATIONS FOR PROTON THERAPY

These sessions will explore current clinical trial data and model-based selection approaches, touching not only upon the positive data but also the challenges encountered during each clinical trial and how they were overcome. Read more

HEALTH ECONOMICS, QUALITY ASSURANCE AND PRACTICAL IMPLEMENTATION

These sessions will explore the challenges and hurdles associated with the practical implementation of proton therapy into general radiotherapy practice and discuss innovative ways to use patient data to further improve patient outcomes. Read more

OPTIMISING PROTON THERAPY AND TRANSLATING ACADEMIC RESEARCH INTO THE CLINIC

These sessions will explore the current uncertainties in proton therapy and discuss how academic research working to overcome these challenges will be translated into the clinic. Read more
PRE-DAY WORKSHOP: 28.03.17

ALTERNATIVE TO PROTONS
FROM A PHYSICIST PERSPECTIVE

10:00 PRINCIPLES AND PRACTICE OF THE MODEL-PARTICLE CENTRES

09:00 13.30 TIMETABLE

RADIOTHERAPY WITH HELIUM IONS - AN STARTING UP A NATIONAL CENTRE FOR

12.00 COMBINING PROTON THERAPY WITH OTHER TREATMENT OPTIONS

11.30 SELECTING PATIENTS FOR PROTON THERAPY. PRINCIPLES AND PRACTICE OF THE MODEL-BASED APPROACH

11:00 RADIOThERAPY WITH HELIUM IONS - AN ALTERNATIVE TO PROTONS

12.30 APPLICATION OF THE MODEL-PARTICLE APPROACH

12:30 NETWORKING LUNCH

13:00 CLINICAL BENEFITS AND CHALLENGES FOR

PARTICLE THERAPY IN PAEDIATRIC TUMOURS

Professor Beate Timmermann, Director of the Clinic for Particle Therapy and Medical Director, The West German Proton Therapy Centre, Essen

Proton therapy for non-ocular tumours in children is a relatively new development in Europe. Main arguments for proton therapy are the reduced risk for secondary cancers as well as a more precise sparing of organs at risk. Due to interdisciplinary advances more children survive their childhood cancer and have to deal with late effects of their primary cancer treatment. A main challenge of proton therapy remains the prolonged time for treatment planning. Metal or breathing movements in the irradiated volume pose additional challenges and sometimes develop into a pitfall during treatment planning.

PRESENTATION ABSTRACT TO BE CONFIRMED

PROTON THERAPY IN DENMARK

Professor Cai Grau, Professor of Radiotherapy, Department of Oncology, Aarhus University Hospital

The Danish Proton Therapy Centre will be a clinical trial offering proton therapy free of charge to all appropriate Danish patients. The clinicians and scientists will aim to strengthen both the national and international clinical evaluation, with the potential for advanced novel treatment modalities. Research will be a major part of the activity of the centre. The clinical treatment protocols will aim to establish evidence for the clinical outcome of proton radiotherapy. The translational research conducted in the radiobiology and functional imaging programmes will aim to characterise the individual normal tissue and tumour biology, relevant for proton therapy. This will be facilitated by building on existing data with clinical data, outcome measures, radiotherapy dose plans, and biobanks.

PRESENTATION ABSTRACT TO BE CONFIRMED

PROTON RADIOTHERAPY WITH PENCIL BEAM SCANNING IN THE TREATMENT OF HEAD AND NECK CANCER AND MALIGNANT LYMPHOMAS

Dr Jiří Kuběš, Medical Director, Proton Therapy Centre Czech

Pencil beam scanning technology opened space for the use of proton radiotherapy in the treatment of complicated target volumes and indications in which it was not possible with passive scattering proton radiotherapy. Head and neck cancer radiotherapy, especially with irradiation of bilateral cervical lymph nodes, is an example of an indication for which the toxicity of modern radiotherapy is significant, and dose reduction to the organ at risk (OAR) is required. For such tumours, an adaptive approach is necessary. The use of PBS, adaptive approach and clinical experiences with such treatment of head and neck tumours will be presented. Malignant lymphomas, especially mediastinal forms, are other indication that were difficult to treat with passive scattered protons due to respiratory and cardiac motion. Experiences with PBS radiotherapy in combination with deep respiratory breath old technique will be presented.

PRESENTATION ABSTRACT TO BE CONFIRMED

IMPROVING PROTON THERAPY BY METAL-CONTAINING NANOPARTICLES

Professor Sandrine Lacome, Group Leader Nanomedicine and Hadrontherapy, Institut des Sciences Métaboliques et Oncologiques

The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. This presentation gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting.
DAY TWO: 30.03.17

08.00 REGISTRATION

08.55 CHAIRMAN’S OPENING REMARKS

09.00 BIG DATA-BASED DECISION SUPPORT SYSTEMS FOR PROTON THERAPY
Professor Philippe Lambin, Director, Maastricht Radiation Oncology Clinic, University of Maastricht and MAASTRO Clinic

We strongly believe that proton therapy will benefit to a subgroup of patients and that we will have to sue personalized medicine as they help physicians decide how best to treat their individual patients. They are based on data from large groups of patients and can be used to help in the routine NHS practice has considerable potential to revolutionise the treatment of patients. However, we need access to high-quality patient-level data if we are to ensure that the treatments given to the right patients and rich and detailed follow-up data to evaluate the success of this intervention on those who are treated. This presentation will cover the practical aspects of cancer data collection by the National Cancer Registration and Analysis Service in Public Health England. It will explain how data is collected, linked and analysed and the how this resource can be used for: QUALITY AND CLINICAL RESEARCH.

10.00 09:30 REGISTRATION

08:00 REGISTRATION

10.30 MORNING NETWORKING BREAK

11.00 CLINICAL EVALUATION OF PROTON THERAPY
Professor Stephanie Combs, Director of the Clinic for Radiation Oncology and Radiation, Technical University of Munich

The clinical introduction of proton therapy requires an extensive analysis of its benefits compared to conventional radiotherapy and a detailed analysis of possible uncertainties. Challenges should be tested in well-designed prospective trials; this is particularly true in a situation where even the prediction of clinically relevant benefits based on technical advantages are likely to be marginal. The academic clinical community, together with healthcare providers and funders, should ensure that proton therapy is appropriately tested and consequently only used in indications with evidence of true clinical benefit.

12.00 PROTON THERAPY: HOW TO MAKE IT HAPPEN FROM AN ECONOMIC PERSPECTIVE
Professor Dr. Yolande Lievens, Chair of the Radiation Oncology Department, Ghent University Hospital, Belgium

Owing to increasing healthcare costs, there is a need to examine whether the benefits of new technologies are worth the extra cost. In proton therapy, where the evidence in favour is limited, it is heavily debated whether the expected benefit justifies the higher capital and operating costs. There is an urgent need to collect appropriate data to allow for reimbursement of such novel technology.

13.00 SUSTAINABLE CARBON-ION RADIOTHERAPY FACILITIES USING NEXT-GENERATION TECHNOLOGY: A VIABLE ALTERNATIVE TO PROTON THERAPY
Professor Tadashi Kamada, Director, NIRS Research Center for Charged Particle Therapy

Despite the enormous initial investment required, five carbon-ion radiotherapy centers are in operation and another two are under construction in Japan. After twenty years of experience with carbon-ion radiotherapy, and following substantial technological progress, improved profitability with better clinical outcomes has been observed at carbon-ion radiotherapy facilities, constituting a viable alternative to proton therapy.

14.00 PROTON THERAPY: HOPE, HYPE, TRAVAIL. INFORMATION AND CLINICAL EVIDENCE
Professor Michael Brada, Professor of Radiation Oncology, University of Liverpool

Despite the absence of high-level evidence of the benefits of proton therapy, showing improved efficacy, reduced toxicity, or both, compared to best photon radiotherapy, the number of proton facilities continues to increase at an exponential rate. This growth is based on the belief in the clinical benefits, which must surely follow the more localised deposition of energy charged particles compared to photons. While such belief and enthusiasm is necessary for bringing new technically challenging technology into clinical practice, it needs to be tempered by realism which takes into account not only the potential advantages but also the potential uncertainties and risks inherent in such complex technology. As with the introduction of new drugs, the potential value should be tested in well-designed prospective trials; this is particularly true in a situation where even the prediction of clinically relevant benefits based on technical advantages are likely to be marginal. The academic clinical community, together with healthcare providers and funders, should ensure that proton therapy is appropriately tested and subsequently only used in indications with evidence of true clinical benefit.

14.30 HOW TO COLLABORATE ON A NATIONAL LEVEL TO SECURE QUALITY AND PATIENT RECRUITMENT - EXPERIENCES FROM THE SWEDISH MODEL WITH THE FOCUS ON PATIENT SELECTION AND CNS TREATMENTS
Professor Petra Witt Nyström, Specialist Physician, Experimental and Clinical Oncology, Uppsala University

The clinical introduction of proton therapy requires an extensive analysis of its benefits compared to conventional radiotherapy and a detailed analysis of possible uncertainties. Challenges should be tested in well-designed prospective trials; this is particularly true in a situation where even the prediction of clinically relevant benefits based on technical advantages are likely to be marginal. The academic clinical community, together with healthcare providers and funders, should ensure that proton therapy is appropriately tested and subsequently only used in indications with evidence of true clinical benefit.

15.30 AFTERNOON NETWORKING BREAK

15.00 DISCUSSION

The Place of Proton Therapy in Future Radiotherapy Practice

This panel will explore the requirement for randomised clinical trials compared to phase 1 and 11 trials and touch upon various models used in patient selection and the identification of evidence-based indications for proton therapy. The importance and challenges of integrating proton therapy with other treatment options will be discussed, alongside the potential of alternative ion therapy such as Helium and Carbon. The cost-effectiveness of proton therapy and challenges around reimbursement will also be debated and the clinical and commercial viability of personalised radiotherapy will be deliberated.

16.00 THE ROBUSTNESS OF PBS TREATMENT
Dr Vladimir Vondráček, Head of Clinical Physics, Proton Therapy Centre Czech

17.00 COMBINING PROTON TREATMENT WITH IMMUNE THERAPY: NATURAL PARTNERS?
Professor Dirk De Ruysscher, Radiation Oncologist, Maastricht Clinic, Maastricht University Medical Center

Radiotherapy induces upregulation of MHC class I molecules, which are crucial for T-cell activation and upregulates tumor-associated antigens (TAA), which are expressed at the surface of cells in association with MHC class I antigens. Radiation may alter the MHC class I associated peptide profile. These phenomena allow for radiation to act at an in situ vaccination, to cause T-cell priming and to affect trafficking, infiltration and killing of cancer cells. However, when radiotherapy alone is delivered, “abscopal” responses are hardly observed. The reason is that efficient mechanisms aiming to prevent auto-immunity dampen the anti-cancer immune response. The combination of radiotherapy with immunomodulatory drugs is therefore an attractive approach to enhance this abscopal effect and thus generate both local and systemic immune responses. As an intact immune system is central to allow an abscopal effect, strategies to reduce lymphopenia are needed. Proton therapy reduces lymphopenia and lowers the dose to normal tissues, possibly leading to improved immune responses with less side effects.

18.00 CLOSE OF CONFERENCE DAY TWO
There are many aspects that are important to consider when planning and building a proton therapy centre in order to establish appropriate clinical and research capabilities. From building a business case for proton therapy and selecting and commissioning vendors, to determining the clinical workflow and seamlessly integrating proton therapy into other oncology services, each step requires careful preparation and an in depth understanding, to ensure success. These sessions will explore the challenges and hurdles associated with building a proton therapy centre and offer advice and guidance on how best to overcome them. Case studies and lessons to be learnt from successful centres will allow participants to take the mistakes of others and apply these lessons to their own development plan.
HEALTH ECONOMICS, QUALITY ASSURANCE AND PRACTICAL IMPLEMENTATION

Increasing healthcare costs means there is a great demand to examine whether the benefits of new technologies such as proton therapy justify the higher capital and operating costs. With limited clinical evidence comparing protons to conventional radiotherapy, there is much debate around reimbursement strategies for this treatment. In addition, new ways to collect and analyse patient data and using such data to develop clinical decision support systems, are important aspects to explore when considering the practical aspects of implementing proton therapy into the clinic. These sessions will explore the challenges and hurdles associated with the practical implementation of proton therapy into general radiotherapy practice and discuss innovative ways to use patient data to further improve patient outcomes, as well as the clinical and commercial viability of personalised radiotherapy.
Currently, only around 10% of all patients eligible for radiotherapy are treated with protons. To increase this number and successfully improve patient outcomes, more clinical data supporting the benefits of proton therapy compared with photon therapy are needed. There is much debate around the requirement for randomised controlled clinical trials in determining suitable evidence-based indications for proton therapy. These sessions will explore current clinical trial data, touching not only upon the positive data but also the challenges encountered during each clinical trial and how they were overcome. Throughout Europe, various model-based approaches to patient selection are used and representatives from a number of countries will discuss their approach to determining suitable indications for proton therapy.
Proton therapy is rapidly catching up to conventional photon therapy technology. This said, there are still numerous important uncertainties in planning and delivering proton therapy, from both the clinical and physics perspective. These sessions will explore the current uncertainties in proton therapy and discuss how academic research working to overcome these challenges will be translated into the clinic. From treatment planning and motion mitigation to relative biological effectiveness, multidisciplinary collaborations are required to successfully overcome these uncertainties in proton therapy. These sessions will also explore innovative and novel methods to optimise the treatment such as with the use of nanoparticles.
Sponsorship Opportunities

Options Include:

Networking
- Private Lunch/Dinner Host (2 available)
- Drinks Reception (1 available)
- Lunch Host (2 available)
- Networking Break Host (4 available)
- Speaker green room host (1 available)
- Meeting Sponsor

Branding
- Lanyards
- Delegate bags
- Branded pads and pens for delegates
- Water bottles
- Internet & Charging Pods

Branding

- Speaking slot during main conference (4 available)
- Technology Demo (4 available)
- Host a Private Workshop (2 available)
- Chairperson Position (2 available)
- PLUS many more opportunities to demonstrate your knowledge and experience in this market

Thought Leadership

- Speaking slot during main conference (4 available)
- Technology Demo (4 available)
- Host a Private Workshop (2 available)
- Chairperson Position (2 available)
- PLUS many more opportunities to demonstrate your knowledge and experience in this market

If you have a service, solution or a technology that could benefit this audience and would like to be positioned as a thought leader or commercial partner, please contact Stephen Swarray directly at events@kisacoresearch.com

2016 Event Sponsors/Exhibitors

- Advanced Oncotherapy
- C-Rad
- Hitachi
- Iba
- IcoMetrics
- iel
- Glrad
- MEVION
- Philips
- Proton Partners International
- RaySearch Laboratories
- Siemens Healthineers
- Stantec
- Varian Medical Systems
- VisionRT
- Particle Therapy
REGISTRATION INFORMATION

Payment Terms for the European Proton Therapy Conference:
- You must email us a signed letter from the Hospital / Clinic Supervisor or University / Laboratory with confirmation of your status upon payment.

All Prices are in EUR

All Early Bird discount prices, including Group Discounts, must be paid in full by deadlines provided above.

All discount offers cannot be combined with any other offer, except for the Group Discount, which you can apply to any Early Bird Discount.

Please view our Cancellation Policy.

All Prices exclude NL VAT of 21% - NL824245155B01

EARLY BIRD RATES - UNTIL JANUARY 27, 2017

<table>
<thead>
<tr>
<th>Conference Only</th>
<th>All Access Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>€1,499 + VAT</td>
<td>€599 + VAT</td>
</tr>
<tr>
<td>€1,699 + VAT</td>
<td>€799 + VAT</td>
</tr>
</tbody>
</table>

STANDARD RATES

<table>
<thead>
<tr>
<th>Conference Only</th>
<th>Workshop Only</th>
<th>All Access Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>€1,699 + VAT</td>
<td>€499 + VAT</td>
<td>€899 + VAT</td>
</tr>
</tbody>
</table>

PRICING

FEATURES

- 1/2 Day Workshop
- 2-Day Main Conference
- Daily Lunches & Refreshments
- Post-Show Access to Approved Presentations
- Poster Sessions
- Complimentary Articles and Content

INDUSTRY RATES ONLY: BOOK A TEAM TO SAVE MORE!

- Book a Team of 3+
 - Save an additional 10% off
- Book a Team of 5+
 - Save an additional 15% off
- Book a Team of 7+
 - Save an additional 20% off

VENUE & ACCOMMODATION

The 2nd Annual Proton Therapy Congress will take place at the RAI Amsterdam Convention Centre.

For discounted hotel rates, click here.